
ETMS System Design Document
Version 5.8

17-1

Section 17

Listserver Function

The listserver consists of a single process.

NOTE: The listserver should not be confused with the SDB list server. Also, the listserver is
sometimes called the request server.

The listserver process (see Figure 17-1) provides the user with flight counts and flight list
reports on flight information maintained by the ETMS. The report request is made through
the Aircraft Situation Display (ASD), and the report can be viewed on the screen or obtained
in printed form.

The user may obtain other specialized reports: Sector area report (AREA), arrival delay
prediction report (ARRD), arrival fix loading report (FIXL), list flight plan report (LIFP),
Official Airline Guide (OAG), or schedule database (SDB) report, and time verification report
(VT). Flight lists, flight counts, AREA, ARRD, OAG, and VT reports may be obtained for
any airport or combination of airports and for sectors, fixes, and Air Route Traffic Control
Centers (ARTCCs) as well. FIXL and LIFP reports can be obtained for any one fix or airport.
The listserver obtains the information for the reports from various ETMS databases. Figure
17-1 shows how the listserver communicates with the other ETMS processes.

Design Issue: the Command Line Interpreter

As mentioned above, the listserver provides the user with flight information available
throughout the ETMS system. A command line interpreter was developed as the user
interface to carry out this function. The command line interpreter consists of a keyword
driven language and a set of syntactical rules on how to use the language. This section of the
document describes the main design issues regarding the command line interpreter. One of
the issues is understanding the request entered on the command line, and another is how to
use the data encoded in the request to obtain the requested information from the ETMS
databases. The following discussion describes the steps involved in understanding the request
and in filtering the data to produce the desired results. Figure 17-2 summarizes the steps of
the process.

ETMS System Design Document
Version 5.8

17-2

ftm_coproc

TDB

SDB

data
request

data files

data request

schedule data

flight list

flight list

data request

flight list

Listserver

Network
Addressing

ASD

FDBR

FTM

warning
error
report name

data request

flight list

Figure 17-1. Overview of the Listserver’s Role in the ETMS

ETMS System Design Document
Version 5.8

17-3

Wait for request

Divide input string into component works

Look up meaning of each word

Set filters

Fill in defaults and do error checks

Apply Filters

Format Report

Return Response File

Are there filters in the request?

Filters Set?

Get User Input

Y

Y

N

Count Flights

Get Data

N

Figure 17-2. Flow Chart of the parsing Algorithm

ETMS System Design Document
Version 5.8

17-4

The following is a typical request which asks for counts for arrivals at bos and jfk airports
on twa airline, excluding b727 aircraft, for the time span between 1200 and 1359, inclusively:

req a [bos, jfk] airl twa type -b727 1200 to 1400

When the input string is received by the listserver, it is divided into its component words.
Each word is looked up in a dictionary; this step associates a definition and value with each
word. The definition is used by the parsing process to determine what kind of word it is,
and the value is used to determine the type of item at hand. The dictionary consists of a hash
table created out of a file that contains all the valid words that can appear in a request. These
words represent valid FAA designators for airports, Navigational Aids (NAVAIDs), sectors,
aircraft types, ARTCCs, and airlines plus all valid keywords accepted by the command line
language.

When all the words that appear in a request are successfully identified, they are regrouped
into phrases. In the context of the listserver a phrase is a group of words that defines a
particular characteristic of the flight information that is being requested. Flight information
can be characterized by:

• Demand type - arrivals and/or departures

• Primary location(s) or place(s) of interest

• Secondary location(s) or place(s) of interest

• Time

• Date

• Airlines

• Equipment type, i.e., TYPE B747

• Equipment type prefix and suffix only, i.e., EQUIP R/_/H

• Extended equipment type, i.e., E_TYPE 4R/B747/H

• Aircraft class

• Aircraft category

• User category

• Aircraft remark flag

• Unknown origination airport

• Unknown destination airport

ETMS System Design Document
Version 5.8

17-5

Distinctions can be made between characteristics to be included and those to be excluded.
Besides these basic flight information qualifiers, there are other phrases that characterize the
report formatting. Phrases that qualify flight information are called filters.

Assuming the demand type is for both arrivals and departures, the primary and secondary
places of interest can be defined as follows. The user desires any flight coming from the
primary place(s) of interest and going to the secondary place(s) of interest, and any flight
going to the primary place(s) of interest and coming from the secondary place(s) of interest.
Limiting this search by direction can be done by changing the demand type to A for arrivals
or D for departures. D, for departures only, signifies the user wants flights departing the
primary place(s) of interest and arriving at the secondary place(s) or everywhere if no
secondary place of interest is given. A, for arrivals only, signifies the user wants flights
arriving at the primary place(s) of interest that have departed from the secondary place(s) of
interest or from everywhere if no secondary place of interest is given. The primary place of
interest can have locations to exclude as well. For example, a request of the form REQ A
[ZNY -JFK -LGA] [ZBW -BOS] LIST would mean: return to the user a list report with all
flights arriving in the N.Y. Center (excluding those arriving at John F. Kennedy or at La
Guardia airport) and departing from the Boston Center but not departing from Logan Airport.

The process of grouping the words into phrases is accomplished by applying the various
syntactical rules and by the fact that the beginning of a phrase is usually identified by the
presence of a keyword. When a keyword is encountered, words following it are grouped,
based on their relationship to the keyword as represented by the definitions associated with
each word. Let us review the previous request example:

 req a [bos, jfk] airl twa type -b727 1200 to 1400

In this case airl twa is an airline phrase. This means that airlines are to be specified; airl is
the keyword, and twa is the name of the actual airline. twa is the only airline of interest.
Similarly, type -b727 is an equipment type phrase. In this case the user wants to exclude all
b727 type aircraft; note that exclusions are signaled by a minus sign (-).

Special components that deserve attention are the primary and secondary places of interest.
A request having only a primary place of interest and not limited to either departures or
arrivals would mean include anything going to or coming from the specified primary place of
interest. If one had a primary place of interest and a secondary place of interest, the meaning
takes on the form of anything coming from the primary place going to the secondary place or
visa versa. To eliminate the visa versa logic and to specify direction, prefix the two places
with an A (for arrivals) or a D (for departures).

When the request is parsed into phrases, a determination is made whether or not there is
filtering involved in the request. The listserver does not maintain the databases, it is just
another user (see Figure 17-1). The listserver needs to get data from a database in order to
respond to a request. Data is retrieved from a database by giving the database interface
module the name(s) of the location(s) for which information is desired, as well as the time
range of interest. Therefore, when the listserver has received the data it needs to service the

ETMS System Design Document
Version 5.8

17-6

request, that data has already been filtered for location and time. In the example above, there
are only two filters required: one is for airlines and the other for aircraft type.

Phrases in a sentence represent data characteristics that the user either wants to count or
does not want to count. Thus, each phrase can be represented as a Boolean expression. The
representation of the request by a Boolean expression provides not only a way to understand
what the request means, but a way to use the information encoded in the request to retrieve
just the desired information from the ETMS databases.

At this point, it is easier to follow the parsing algorithm by applying it to the example given
above. In brief, assume that the request is broken up into its component words, and these
have been successfully looked up in the dictionary. The remainder of the parsing is
accomplished through the following steps:

• Break down the request into component phrases:

o demand type - a (arrivals)

o Primary location(s) of interest - bos and jfk

o airline(s) to include (airl) - twa

o aircraft type to exclude (type) - b747

o time span - 1200 to 1400

• Translate each phrase into a boolean expression:

o combine the first two phrases - [(a = bos) or (a = jfk)]

o airline(s) to include - (airl = twa)

o aircraft(s) to exclude - (type <> b747)

o time span - (arrival time > 1200) and (arrival time < 1400)

• Connect all these expressions into one single boolean expression which
represents the meaning of the request:

 If [(a = bos) or (a = jfk)] and (airl = twa) and (type <> b747) and
 (arr time >1200) and (arr time < 1400), then accept flight

 Else reject flight.

The time span phrase is inclusive if the end time minute specified does not end on a 00, 15,
30 or 45 minute. If the time span ends on a 00, 15, 30 or 45 minute then that end time
minute will not be included in the report. This was changed to reflect what air traffic
controllers expect to get back in a report, based upon the times specified, especially in the
case of requesting data that in turn will be fed to SCDT programs to determine which flights
should be controlled by EDCT.

Now that there is a representation of the meaning of the request, the next issue that has to be
addressed is how to use the representation to get the data needed and to extract just the

ETMS System Design Document
Version 5.8

17-7

information wanted. At this point, the listserver associates a filtering routine with each
boolean subexpression. That is, there exist declared functions that evaluate just one boolean
subexpression. For example, the airline filtering function follows the logic: IF (airl = airline)
then accept flight, ELSE reject flight, where airl represents the airline name entered in the
request and airline would be the appropriate field of the flight record being inspected.
Exceptions to this filtering are filtering on EQUIP types and filtering on E_TYPES. Filtering
on EQUIP requires checking if the EQUIP type has either the filtered aircraft equipment prefix
or the aircraft equipment suffix specified in the flight. Filtering on E_TYPES allows for
filtering on multiple fields AND-ed together. For example, filtering on E_TYPE B/L101 would
signify one wants to match on all flights that have an aircraft equipment prefix of B/ that are
ALSO L-10-11's. Before the listserver sends out for data, it sets up the filtering scheme that it
will follow once the data is retrieved. The filtering scheme consists of queuing pointers to all
the filtering functions that the data must be subjected to. This is illustrated by the filter queue
represented in Figure 17-3.

identify filters

address filter type

address filter airline

Figure 17-3. Queue of Pointers to Filter Functions

Once the filtering queue is initialized, the listserver sends out for the appropriate data. Unless
the request is in the form: REQ OAG…, first it will send to the Traffic Demands Database
(TDB) a request for data. TDB then returns a file of data, unless the request was a Center list
request, in which case TDB passes the data file to the FDBR process to assist in filtering out
restrictions. In the Center list request, FDBR then returns the data file to the listserver
process. At this point, the listserver passes the file, untouched, to the FTM process. FTM
completes the data and sends the file off to the ftm_coproc process, which in turn returns the
file to the listserver process. Then, if the request asks only for data more than twelve hours
into the past or future, that data will additionally have to be retrieved from the SDB process.
Alternately, if the request is in the form: REQ OAG…, the listserver will make the request
only of the SDB process. When all the data is retrieved from the databases, it is subjected to
the filtering queue, filtered flights are counted, and the appropriate report is generated (see
Figure 17-4).

ETMS System Design Document
Version 5.8

17-8

Database

Count Flights Report

Filter Queue

Flight Data

Filtered Data

Figure 17-4. Filtering Scheme

Execution Control

The listserver is a background process that is started by each node's nodescan process that
runs on every user_node that an ASD runs on. Only one should run on a node, even if there
are multiple ASDs/NET.MAILs/TM Shells, etc. Once the nodescan process has successfully
started a listserver, the ASD can hook up to the network address of the listserver and does so
at initialization. At this point, a user request can be sent via the ASD to the listserver. It
should be noted that programmers can bypass using the ASD by making requests directly to
the listserver through the NET.MAIL process or the TM Shell process. Statistics requests are
also available to the programmer about a listserver via the NET.MAIL process. SO statistics
display Network Address connections available and S1 statistics display information about a
listserver's outstanding requests.

Input

When the listserver is started, it creates a list of Network Addresses to be used in order to
facilitate communication with the various databases. The listserver will communicate with
ASD, NET.MAIL and TM Shell based upon the incoming Network Address of the originator
of the request. The listserver process treats identically all three types of processes that can
originate requests. Once the listserver is invoked and initialized, it receives the following
input:

• User request - this is a command line request for flight information.

ETMS System Design Document
Version 5.8

17-9

• ETMS data - flight information coming from various sources (refer to
 Figure 17-1).

• Statistics request - this is a command line request for statistics information
about the listserver module.

Output

The output of the listserver process is one of the following reports: flight list, flight counts,
sector area reports (AREA), arrival delay prediction (ARRD), arrival fix loading (FIXL), list
flight plan (LIFP), scheduled (OAG), or a time verification (VT) report. Output can also take
the form of warning or error messages returned to the initiator of the request and of a
statistics message returned to NET.MAIL. There is also a trace file created in the
/etms_path/trace directory that mimics ASD's trace file in naming conventions, various lines
initially in the trace file, and in the rules for closing and re-opening a new file with a new date
stamp at midnight. Beyond that, the trace file contains what previously appeared if one ran
LSTNET in a pad. The name of the trace file is
/etms_path/trace/lstnet_transcript.YYYYMMDD.X where YYYY = current year, MM =
current month, DD = current day of the month, and .X indicates iteration of invocations that
have occurred that day.

Processing Overview

The listserver consists of four main modules, depicted in Figure 17-5 as ovals. The four
modules are: the process_lst_req module, the parse_req module, the process_req module, and
the ARRD Report Generator module. The NODESCAN process starts up the listserver as a
background process. Once the listserver is initialized, it waits for a request. A request comes
in from the ASD via Network Addressing software, and it is handled by the process_lst_req
module. The process_lst_req module then passes control to the request_parser module to
decide if the request is syntactically valid.

The request_parser interprets the request and in doing so establishes a queue of pointers to
routines that will filter the data once it is obtained, flags, and other internal information. After
the request is interpreted, the process_lst_req sends out a request for data to the sources
involved and waits for a response.

When the data is received, it is transferred from the file where it is stored into the data
structures used by the process_req module or by the ARRD Report Generator. At this point
either process_req or the ARRD Report Generator is called, and the data is subjected to the
queue of filter pointers (when they are set) and any other conversion/extraction processes.
Once the data is processed, it is formatted and written to a file. Finally, the name of this
report file is sent back to the ASD, through which it can be read (see Figure 17-5).

ETMS System Design Document
Version 5.8

17-10

process_lst_req parse_req

ARRD

FDBR

request text

parsed request, error, warning

FTM_COPROC

FTM

ARRD report name
errors

errors

SDB

TDB

data file

flight data

requests

reports, errors, warnings

report name
warning
error

data request

clist
only

FTM or
SDB
data file

ASD

Figure 17-5. Data Flow of the Listserver Process

17.1 The process_lst_req Module

Purpose

The process_lst_req module is the front-end of the listserver. It handles communications with
the ASD and the various data sources (FTM, SDB, and TDB).

Input

When the process_lst_req module is invoked, it receives as input the network addresses of the
ASD that invoked the request and in the sub-address field, the site number, as defined by the
/etms5/shared/config/asd_list_site_data file, and the text of the request itself. The subaddress
field is used to determine from which Hub Site one will access the TDB, SDB, and FTM
database processes. The request may contain embedded scripts. If so, they are expanded to
the full request by the local listserver module within the process_lst_req module. The
process_lst_req module needs ASD's network address so that it can properly address mailbox
messages to the ASD upon completion or the return of any warning or error message. Once
it is running, the process_lst_req receives data file names from the various data sources when
they are queried as well as error and warning messages and status flags from the routines it
calls.

ETMS System Design Document
Version 5.8

17-11

Output

The process_lst_req module sends the user's request to the parse_req module, which once the
request is parsed, returns control to the process_lst_req module. Then the process_1st_req
module transfers control to the process_rec module, which sends data requests to the various
databases. Upon return of control from the process_req module, the process_lst_req module
passes either an error message back to the ASD (or the initiator of the request), or a warning
and subsequently a report name back to the ASD (or the initiator of the request), or the report
name back to the ASD (or the initiator of the request). For the purpose of simplifying this
document, the assumption is made that the initiator of the request is always the ASD process.

Processing

As mentioned above, the process_lst_req module is the front end of the listserver process; i.e.,
it serves as the interface between the ASD and the databases on one side and the parse_req
and process_req on the other. The main task of the process_lst_req is to handle
communications between these different processes. This task involves keeping track of
messages received, messages sent, and communication problems such as queuing of unsent
data requests, timing out after waiting for a database response, and unprocessed or semi-
processed requests.

Error Conditions and Handling

One of the most common error situations handled by the process_lst_req is that of deciding
when a communications message is valid and when it is not. The validity of a
communications message is determined by a series of tests; once a test fails, the message is
discarded.

Besides message validation, the major problem handled by this process is obtaining the data
for a request. Errors that arise during this process include not being able to communicate
with a particular database or not getting a response once a message is sent. If the
unreachable database is the TDB, then the request is made to the FTM, but only when the
location of interest is a pacing airport. Otherwise, the request is removed from the queue, and
an error message is sent back to the ASD. The request is also aborted when the SDB or the
FTM is unreachable. When a request is aborted, processing begins on the next request in the
request queue.

The other major error situation occurs when the process_lst_req tries to send a data request,
but it cannot because the Network Addressing software (i.e., node.sw) is busy. In this case,
the data request is queued until the node.sw process tells the process_lst_req module that it has
accepted the request.

17.2 The parse_req Module

Purpose

ETMS System Design Document
Version 5.8

17-12

The parse_req is the module that interprets the meaning of the requests and sets up the
encoded information in the request to use it for filtering the raw data obtained from the
databases. It can also reject a meaningless or syntactically incorrect request. Historically,
however, it does little syntax checking and attempts to interpret whatever the user inputs as a
valid request.

Input

The parse_req has several types of input:

• Demand request as entered by the user (for example d ord from 1500)

• Name of the data file, when processing a secondary request

Output

The parse_req_t data structure has several types of output:

• Data request information, i.e., the locations and time interval that the user is
requesting data for

• Other parsed data, such as airlines or aircraft type to be included or excluded
and the type of request (list, counts, AREA, ARRD, FIXL, LIFP, OAG, or
VT report)

• Warning status indicator and warning message string, when a warning is to be
issued to the ASD process before the report is returned

• Error status indicator and error message string when an error occurs

• Original request - the text of the original request (expanded if embedded scripts
were originally entered) is stored in a placeholder file under the filename of the
request identifier in the /reports directory. When the process_req module
returns the filtered/formatted file to the process_lst_req module, the place-
holder file is over-written with the report file. The text of a primary or hub
site request are placed as a heading in the primary report output as well. The
text of the original request is used as a heading in the report of a secondary
request and then a heading follows comprised of the text of the secondary
request.

Processing

The main task of the parse_req module is to implement the parsing algorithm described in the
design issues section; i.e., it takes the user's input string, expands embedded scripts if
necessary, and decodes the data in it. It assigns a unique request identifier and a unique
request number for this request within this listserver. The unique request number is passed to
external processes so that if errors are returned, the listserver can determine which
outstanding request the error is in reference to. For a hub site request the LIST and LSTHUB

ETMS System Design Document
Version 5.8

17-13

processes use their respective request numbers to communicate information about a single
request. (Each has its own unique request number to refer to a request.) The request
identifier is the file name that the listserver creates when done with a request. The LIST and
LSTHUB also have their own unique request identifiers to distinguish a request. Once these
assignments have been made and a link is created in the linked list of outstanding requests, the
process of understanding the request results in the setting of variables that will enable the
data-gathering process and the data processing (filtering and bucketing, etc.). For the most
part, these variables fall in the sub-record known as dsp^.pd.xxx where xxx is the variable
being set. DSP (Data Stat Pointer) points you to the correct link in the linked list of requests
whose header link is data_stat_head. PD (Parsed Data) refers to information filled in by this
parse_req module, which assists in requesting the correct information from the Hub
processes and FTM and in formatting the report once all the data is returned by the Hub
processes and FTMs. Besides interpreting the user's request, the parse_req module retrieves
data for secondary requests.

Secondary requests are made on the previous data set; these requests usually involve viewing
the data in a different way or counting, based on different options. For example, an original
request for a clt 1500 2300 yields a flight counts report for all arrivals at clt for the time
period between 1500 and 2300. Now, if the user wants to see what the actual flights are and
wants them sorted by aircraft ID, the request will look like this: list sort acid.

Since the data is already retrieved from the databases, the parse_req just obtains the data
locally from the data file(s) located in the /rawlist directory. To reduce the response time, the
data files were previously returned by the Hub Site processes and FTM. These data files are
passed to the parse_req module which formats the files, according to the user's new
specifications made in the secondary request, and then produces the output report file.

LIST Information Columns, Column Headers, their Keywords, and an
Example
The full choice of options a user can specify after the LIST keyword in order to view desired
informational "columns" in the output of a LIST report (as opposed to a COUNT report) are:

KEYWORD Column Header Contents
__
_

ACID/IDENT ACID Aircraft Id (flight number)
Ex: REQ BOS LIST ACID

ACENTR ACENTR Arrival Center
Ex: REQ BOS LIST ACID ACENTR

AFIX AFIX Arrival Fix
Ex: REQ BOS LIST ACID AFIX

ETMS System Design Document
Version 5.8

17-14

AIRL AIRL Airline
Ex: REQ BOS LIST ACID AIRL

AIRP ORIG DEST Origination & Destination Airport
Ex: REQ BOS LIST ACID AIRP

AGTD AGTD Actual Gate Time of Departure
Ex: REQ BOS LIST AGTD

ETMS System Design Document
Version 5.8

17-15

KEYWORD Column Header Contents
__
__

AGTA AGTA Actual Gate Time of Arrival
Ex: REQ BOS LIST AGTA

ALT ALT Filed Altitude
Ex: REQ BOS LIST ACID ALT

RAL RAL Last Radar Altitude reported
Ex: REQ BOS LIST ACID RAL

ASECT ASECT Arrival Sector (last one in sector list)
Ex: REQ BOS LIST ACID ASECT

CGTA CGTA Controlled Gate Time of Arrival
Ex: REQ BOS LIST ACID CGTA

CGTD CGTD Controlled Gate Time of Departure
Ex: REQ BOS LIST ACID CGTD

CA_DIF CA_DIF Diff. between CGTA & AGTA times
Ex: REQ BOS LIST ACID CGTA
 AGTA CA_DIF

CD_DIF CD_DIF Diff. between CGTD & AGTD times
Ex: REQ BOS LIST ACID CGTD
 AGTD CD_DIF

CLASS CLS Airplane Weight Class (S/L/H)
Ex: REQ BOS LIST ACID CLASS

CTG CTG Category
Ex: REQ BOS LIST ACID CTG

DCENTR DCENTR Departure Center
Ex: REQ BOS LIST ACID DCENTR

DEST DEST Destination Airport
Ex: REQ BOS LIST ACID DEST

DSECT DSECT Departure Sector (1st in sector list)
Ex: REQ BOS LIST ACID DSECT

ETMS System Design Document
Version 5.8

17-16

EFTA EFTA
Ex: REQ BOS LIST ACID EFTA

ETMS System Design Document
Version 5.8

17-17

KEYWORD Column Header Contents
__
__

ENTRY ENTRY Sector Entry Time
Ex: REQ BOS LIST ACID ENTRY

EXIT EXIT Sector Exit Time
Ex: REQ BOS LIST ACID EXIT

ETA ETA Estimated Time of Arrival
Ex: REQ BOS LIST ACID ETA

ETD ETD Estimated Time of Departure
Ex: REQ BOS LIST ACID ETD

ETE ETE Estimated Time En-route, in minutes
Ex: REQ BOS LIST ACID ETE

SPD/SPEED SPD Filed Speed
Ex: REQ BOS LIST ACID SPD

GS/G_SPD/G_SPEED GS Last radar groundspeed
Ex: REQ BOS LIST ACID G_SPD

ORIG ORIG Origination Airport
Ex: REQ BOS LIST ACID ORIG

OGTA OGTA Original Gate Time of Arrival
Ex: REQ BOS LIST ACID OGTA

OGTD OGTD Original Gate Time of Departure
Ex: REQ BOS LIST ACID OGTD

OA_DIF OA_DIF Diff. between OGTA & AGTA times
Ex: REQ BOS LIST ACID OGTA
 AGTA OA_DIF

OD_DIF OD_DIF Diff between OGTD & AGTD times
Ex: REQ BOS LIST ACID OGTD
 AGTD OD_DIF

ETMS System Design Document
Version 5.8

17-18

KEYWORD Column Header Contents
__
__

PGTA PGTA Proposed Gate Time of Arrival
Ex: REQ BOS LIST ACID PGTA

PGTD PGTD Proposed Gate Time of Departure
Ex: REQ BOS LIST ACID PGTD

PA_DIF PA_DIF Diff between PGTA & AGTA times
Ex: REQ BOS LIST ACID PGTA
 AGTA PA_DIF

PD_DIF PD_DIF Diff between PGTD & AGTD times
Ex: REQ BOS LIST ACID PGTD
 AGTD PD_DIF

RTE ROUTE Proposed Route
Ex: REQ BOS LIST ACID RTE

AIRWAY AIRWAY LIST List of Jet and Victor Routes used
Ex: REQ BOS LIST ACID AIRWAY

CENTER CENTER LIST List of Centers Traversed
Ex: REQ BOS LIST ACID CENTER

FIX FIX LIST List of Fixes along route
Ex: REQ BOS LIST ACID FIX

SECTOR SECTOR LIST List of Sectors Traversed
Ex: REQ BOS LIST ACID SECTOR

SGTA SGTA Scheduled Gate Time of Arrival
Ex: REQ BOS LIST ACID SGTA

SGTD SGTD Scheduled Gate Time of Departure
Ex: REQ BOS LIST ACID SGTD

SA_DIF SA_DIF Diff. between SGTA & AGTA times
Ex: REQ BOS LIST ACID SGTA
 AGTA SA_DIF

SD_DIF SD_DIF Diff. between SGTD & AGTD times
Ex: REQ BOS LIST ACID SGTD

ETMS System Design Document
Version 5.8

17-19

 AGTD SD_DIF

ETMS System Design Document
Version 5.8

17-20

KEYWORD Column Header Contents
__
__

STAT no label for field Status: Proposed, Scheduled,
Active, or Controlled

Ex: REQ BOS LIST ACID STAT

TGTA TGTA ETMS TTM Estimated Gate Time of
Arrival
Ex: REQ BOS LIST ACID TGTA

TGTD TGTD ETMS TTM Estimated Gate Time of
Departure
Ex: REQ BOS LIST ACID TGTD

TYPE TYPE Aircraft Type (i.e.: L101)
Ex: REQ BOS LIST ACID TYPE

USER USR User
Ex: REQ BOS LIST ACID USER

E_TYPE E_TYPE Expanded Equip Type (i.e.: 4B/L101/H)
Ex: REQ BOS LIST ACID E_TYPE

EQUIP EQUIP Equip Prefix/_/Equip Suffix (i.e.:
B/_/H)

Ex: REQ BOS LIST ACID EQUIP

AC_RMK Headers as below All following declared Remarks Flags
Ex: REQ BOS LIST ACID AC_RMK

|NRP NRP Flag if National Route Program
Ex: REQ BOS LIST AC_RMK |NRP

|LIFEGUARD LFG Flag if Lifeguard /Medevac
Ex: REQ BOS LIST |LIFEGUARD

|CATIII III Flag if CATIII Landing Equipment on
board (Airports can declare Category
III status, means if bad weather can

only
land if airplane has CATIII equipment
Ex: REQ BOS LIST ACID -|CATIII

ETMS System Design Document
Version 5.8

17-21

ETMS System Design Document
Version 5.8

17-22

KEYWORD Column Header Contents
__
__

|ALTRV ATV Flag if 'Altitude Reservation (usu. a
military request)'
Ex: REQ BOS LIST ACID |ALTRV

|SWAP SWP Flag if 'swapping flight from a standard
to a non-standard route (usu. due to
weather)'
Ex: REQ BOS LIST ACID |SWAP

|DIVERT DVT Flag if ' diverted to different dest
airport'
Ex: REQ BOS LIST ACID |DIVERT

|ADCUS ADC Flag if should 'Advise Customs' of
flight

Ex: REQ BOS LIST ACID |ADCUS

The LIST columns that are defaulted if a user only does 'REQ BOS LIST' are as follows for
the arrivals section of the BOS report or for a sector report such as REQ ZNY10 LIST:

ACID TYPE ORIG ETD DEST ETA ETE DCENTR

and the defaults for the departure section of the BOS report are:

ACID TYPE ORIG ETD DEST ETA ETE ACENTR

The scheme for spacing between LIST informational columns is as follows. Two spaces will
be placed after the right-most character of the previous column or the right-most character of
the column header (whichever is wider).

Error Conditions and Handling

This section enumerates the major error situations encountered during the parsing process:

• Unknown word - this is a word that is not contained in the dictionary. The
dictionary is also referred to as the codes file. When encountered, a message
is sent back to the user with the word in quotes. Processing of that request is
then terminated.

• Bad syntax - this error situation occurs when improper options or qualifiers are
entered with a keyword. When this error occurs, processing of the current
request is terminated, and an error message is sent back to the user.

ETMS System Design Document
Version 5.8

17-23

• No data - this situation is encountered when a secondary request is made, and
the input data file is not available to the process.

ETMS System Design Document
Version 5.8

17-24

Warning Conditions and Handling

Warnings can be issued if the request takes a long time or for other reasons. When this
occurs, the request initiator process is notified with a warning message, but processing of
the current request is not terminated.

17.3 The process_req Module

Purpose

The process_req is the process that filters the data gathered from the databases based upon
variables set in the parse_req module. It also counts the data, formats it according to the
user's specifications, and then creates the output report file.

Input

The process_req module has several types of input:

• Raw data - the flight data obtained from the ETMS databases.

• Parsed request - all the information entered by user request, as well as default
information set by the request_parser based on the request.

Output

The process_req module has the following types of output:

• Report - a flight count, flight list, AREA, ARRD, FIXL, LIFP, OAG, or VT
report

• Error status and error message string

• Raw data file - once the report is generated, the process_req module stores the
data that went into producing the report in a file for use in secondary
requests. However, only original request data is stored. The data that goes
into a secondary report is not stored, since it is usually a subset of the original
request data set, or at best, the same.

• Other parsed information - when handling an original request, all information
concerning it is also stored. For example, the time period of the request, the
locations for it, whether the data requested was for arrivals, departures, or
both, etc. This information is necessary to validate secondary requests.

Processing

The process_req module starts its task by running the data through the filters set up by the
parse_req module in the variables within the record structure, dsp^.pd. Once the filtering is

ETMS System Design Document
Version 5.8

17-25

done, the flights are counted according to the interval supplied by the user. If nothing else
was requested, the flight counts report is created. Otherwise, a flight list report is formatted
and generated. If neither LIST nor COUNT was specified in the request, the default is a
flight counts report. After the appropriate report is produced, the data that went into it is
stored along with any other information pertaining to the request, unless this was a secondary
request.

Error Conditions and Handling

The following are the major error situations encountered by the process_req module:

• Cannot write to the response data file - the request is aborted, and an error
message is sent back to the user.

• Cannot store the raw data - the request is aborted, and an error message is sent
back to the user.

17.4 The ARRD Report Generator Module

Purpose

The ARRD (ARRival Delay prediction) report returns predicted delays and predicted aircraft
stack sizes for a selected time interval at a selected airport. This report is used as a tool by
traffic management specialists to monitor near-future traffic flow. The ARRD Report
Generator uses lists of near-term flight information, airport capacities, and predicted general
aviation counts to generate the ARRD reports.

Input

The ARRD Report Generator receives the following types of input from the listserver:

• Message record - a pointer to a record containing the type of report, the
airport, the report start time, the report end time, the stack size, and the stack
time

• Flight list - a pointer to a linked list of flights arriving at the specified airport
during the specified time

• Capacity list - a pointer to a linked list of capacity values and the times for
which they are in effect

• General aviation list - a pointer to a linked list of general aviation counts and
the times for which they are in effect

•• Output file - the output file name and output file name size, in the form of
pgm_$arg

ETMS System Design Document
Version 5.8

17-26

Output

The output of the ARRD Report Generator is the ARRD report, an example of which can be
seen in Figure 17-6. The ARRD report includes nine pieces of data relating to the traffic
delays incurred in each hour of the report:

• Arrivals (ARR) - the total number of aircraft expected to arrive at the
destination airport during each hour of the report plus stack size

• Active flights (ACT) - the total number of arrivals for which a departure
message is received plus the stack size

• Landings (LND) - the predicted number of aircraft landing during each hour of
the report

• General Aviation aircraft size (GA) - the controller specified number of
unscheduled general aviation flights expected each hour

• Capacity size (CAP) - the number of flights to be landed during the hour

• Average stack size (AVERAGE HLD) - the average number of aircraft
projected to be holding in the terminal area for each hour of the report

• Average delay (AVERAGE DLY) - the average of projected delays attributed
to aircraft holding during each hour of the report

• Peak stack (PEAK HLD) - the maximum number of aircraft projected to be
holding in the terminal area for each hour of the report

• Peak delay (PEAK DLY) - the maximum delay projected for any aircraft
holding during the hour

ARRD PIT 03/1700 03/2200

***ARRD * REPORT

AIRPORT : PIT
START DATE : May 3
INTERVAL :1700 – 2200

**

PIT ARRIVAL DELAYS 1715

 0 stacked at 0000
AVERAGE PEAK

TIME AR
R

AC
T

LN
D

CA
P

G
A

HLD DL
Y

HL
D

DL
Y

170
0

32 8 32 56 8 0 1 4 4

189
9

22 8 21 56 8 0 1 4 4

ETMS System Design Document
Version 5.8

17-27

Processing

In general, the ARRD Report Generator creates ARRD reports in the following manner. The
ARRD Report Generator first sorts the flight list received from the listserver and translates
the times from UTC to GMT. Using the capacity of the selected airport (expressed as the
number of aircraft landings per hour), the ARRD Report Generator divides each hour of the
simulation into landing slots. The time difference between these slots is equal to the sixty
minutes in the hour divided by the capacity. The ARRD Report Generator steps through the
arrival demand list (flight list) assigning flights to landing slots and gathering arrival delay data,
based on these assignments. After sequencing through all of the flights in the list, the data
collected is summed and averaged to produce the hourly statistics.

Each flight in the flight list is assigned the earliest available landing time that is equal to or
greater than the flight's Estimated Time of Arrival (ETA) until the total number of landing
slots for the time period is exhausted or until the end of the flight list is reached. Landing
slots become unavailable when assigned to an arriving flight, and any landing slots before the
last assigned slot become unavailable whether used or not.

In order to collect the counts needed to determine the peak and average stack size, the ARRD
Report Generator has a set of sixty counters, corresponding to the minutes of the hour. If a
flight must hold (i.e., the assigned landing time is later than the estimated time of arrival),
every minute counter, which corresponds to the time span bounded by and including the ETA
and the assigned landing time, is incremented. After all the flights in the list are exhausted, the
counters corresponding to the respective hours are summed and averaged. The maximum of
these counts is the peak stack size for the hour.

In gathering the hourly delay data, all delays associated with each flight are added to the
cumulative totals for the respective hours. For those aircraft that began their hold in previous
hours, the entire delay minus any holding time prior to this hour is used. For example, an
aircraft that is projected to have a three-hour delay and arrives at 1230 would contribute a
three-hour delay to the 1200 hour statistics, a two-and-a-half-hour delay to the 1300 hour, a
one-and-a-half hour delay to the 1400 hour, and a half-hour delay to the 1500 hour. The
average delay per hour is the sum of the cumulative delays divided by the number of flights
contributing to those delays. The largest projected delay occurring in each hour is the peak
delay.

In certain cases, the user may set certain conditions under which the ARRD Report
Generator will simulate airport arrivals. Besides setting a capacity value, the user might also
set the number of general aviation flights. If not set, the default of eight is used. Dummy
general aviation flights are distributed throughout the hour when the number of active flights
in the hour is less than the general aviation count specified. In addition, the user may denote a
stack time and a stack size. If specified, dummy flights are added to the flight list at the
designated stack time and are assigned landing slots accordingly.

Figure 17-6. Sample ARRD Report

ETMS System Design Document
Version 5.8

17-28

Error Conditions and Handling

When an error occurs, the ARRD Report Generator returns to the calling program
(listserver).

17.5 Listserver Source Code Organization

This section describes the source code used in building the executable version of the
listserver. The source code resides in Pascal files. Each file contains one or more functional
units called a routine. A routine is implemented as either a Pascal function or procedure. The
Pascal files have been organized as elements in two Domain System Engineering Environment
(DSEE) libraries. The listserver_lib contains the source code for the process_lst_req,
parse_req, and the process_req modules. The source code for the ARRD module is contained
in the arrd_lib library.

In order to build the listserver, the following files should exist in your work directory:

• ~/work/lstsrv.thread.model
The contents of the lstsrv.thread.model file should read as follows:

o -reserved

o [lstnet.v.05.75] -when_exists

• ~/work/lstsrv.thread
To build a non-debug version, the contents of the lstsrv.thread file should read as
follows:

o -FOR ?*.pas -USE_OPTIONS -opt 0

o -reserved

o [lstnet.v.05.75] -when_exists

To build a debug version, the contents of the lstsrv.thread file should read as follows:

o -FOR ?*.pas -USE_OPTIONS -opt 0-config dbg -config timing -dba

o -reserved

o [lstnet.v.05.75] -when_exists

In order to build the listserver, the following DSEE commands must be issued:

•• set system listserver_sys

•• set lib listserver_lib

•• set thread -model lstsrv.thread.model

•• set model lstsrv.sml

•• set thread lstsrv.thread

ETMS System Design Document
Version 5.8

17-29

•• build

•• name version test_listserver! lstsrv.v.05.75

•• exp listserver! -into /etms5/list/lstnet -r

•• OR... instead of (7) and (8) above, execute single DSEE command below:
cre rel lstnet.v.05.75 -fro test_listserver! -exp listserver! -into
/etms5/list/lstnet -r

17.6 Listserver Data Structure Tables

Tables 17-1 through 17-3 describe the data structures.

17.6.1 The data_stat_t Data Structure

The data_stat_t data structure holds all variables associated with a single request. It defines
one link in the linked list of outstanding requests in the listserver process. The pointer to the
front of this linked list is called data_stat_head. This pointer points to the "front" of the
actual linked list whose name throughout the listserver process is dsp^. All parsed request
data, time interval data, and flight data reside within each of these links. This record contains
all the data fields that the user has access to throughout the listserver (see Table 17-1).

17.6.2 The parsed_data_t Data Structure

The parsed_data_t data structure contains returned variables filled in in order to make the
data requests from the database processes and in order to filter requests later when the
database processes return all the data. The parsed_data_t variables are filled in by the
parse_req module as depicted above. The variables contained in this structure are outlined
below (see Table 17-2).

17.6.3 The flight_rec_t Data Structure

The flight_rec_t data structure contains returned data from the database processes about the
requested flights in the listserver process. All flight data obtained from any of the databases is
loaded into linked lists of records of flight_rec_t type. This record contains all the data fields
that the user has access to throughout the listserver (see Table 17-3).

ETMS System Design Document
Version 5.8

17-30

Table 17-1. data_stat_t Data Structure

data_stat_t

Library Name: listserver_lib Purpose:
This record contains all information for a single request.

Element Name: parser.ins.pas

Data Item Definition Unit/Format Range Var. Type/Bits

req_id Unique Request Identifier; (i.e., Report
Name)

loc of interest, lst or
cnt, date, time

- string22

req_num Unique Request Number used by interpro-
cess commun.

1 – 999 integer16

pd Parsed Data; record containing all
returned by parse_req mod.

- - parsed_data_t

sender Network Address of initiator of
request

Network Address - net$_decoded_
header_t

got_tbd_dat Flag indicating if TDB data rec’d for
the request yet

- yes/no boolean

tbd_start_t Start date/time of data requested
form TDB

- - cal_$timedate_rec_
t

tbd_end_t End date/time of data requested from
TDB

- - cal_$timedate_rec_
t

sdb_start_t Start date/time of data requested
from SDB

- - cal_$timedate_rec_
t

sdb_end_t End date/time of data requested from
SDB

- - cal_$timedate_rec_
t

go_to_ftm Flag indicating if data needed from
FTM for this request

- yes/no boolean

need_sdb_dat Flag indicating if data requested from
SDB for this request

- yes/no boolean

need_tdb_dat Flag indicating if data needed from
TDB for this request

- yes/no boolean

need_ftmfill Flag indicating if holes in data
requested by FTM; need to fill

- yes/no boolean

need_ftp_dat Flag indicating get ACK from FTP on
hub site requests only

- yes/no boolean

need_ftm_dat Flag indicating if data needed from
FTM for this request

- yes/no boolean

need_list_dat Flag indicating if data needed from
LSTHUB for this request

- yes/no boolean

reqst_sdb_only Flag indicating user wants only SDB
data (i.e., REQ OAG…)

- yes/no boolean

xmit in LIST w/hub req, Flag is true if
request sent up to LSTHUB

- yes/no boolean

hub_reply Flag indicating LSTHUB process is
waiting to reply to LIST

- yes/no boolean

wait_for_xmit True if LSTHUB waiting on ACK from
FTP that LIST got report

- yes/no boolean

ETMS System Design Document
Version 5.8

17-31

next Pointer to next request in linked list of
outstanding requests

- - data_stat_prt_t

ETMS System Design Document
Version 5.8

17-32

Table 17-2. parsed_data_t Data Structure

parsed_data_t

Library Name: listserver_lib Purpose:
This record contains all information for a single request.

Element Name: parser.ins.pas

Data Item Definition Unit/Forma
t

Range Var.
Type/Bits

acid_lst List of Aircraft Identifiers in the
request

- - concat_lst

airp_lst List of Airport Identifiers in the request - - concat_lst

arrd_info Data requested/returned by the ARRD
module

- - arrd_ptr_t

category Contains user specified COUNT
options to filter report by

record - category_rec_t

data_source Array of all the possible data sources
that a request may need

array 1…db_type array of
com_array_type

last_data_source Last data source sent a request for
info to this list request

- 1…db_type db_type

demand Req. type desired: A=Arrivals,
D=Departures, or B=Both

- A, D, or B req_demand_t

db_rep_type Kind of report desired: AIRP, Sector,
Center, FIX, LIFP,etc.

- - db_req_rec_t

field_cnt Count of fields request. - - integer16

filter_count Count of filters to apply when data is
returned by sources

- - integer16

filter_q Array of addr of filter routines to be
applied after data returned

- 1…max_filter array of func_ptr_t

fixlist List of fixes assoc with airport in
loc_interest list

- - fixptr

fixl_recvd_time Time fix loading message received - - integer16

flname Hubsite or secondary request’s
filename

- - pgm_$arg

init_flname Hubsite requests storage for initiator’s
request full filename

- - prm_$arg

req_interval Default minutes to bucket output report
into.

- Default 15 integer16

req_txt Character array representing request
text input by user.

- - string1792

req_len Length of input request contained in
req_txt above.

- - integer16

resp_flname Unique name and length of the report
pathname to generate.

- - pgm_$arg

sort_field integer indicating if sort on ARR, DEP,
ARR – TIME, DEP – TIME

- - integer16

ETMS System Design Document
Version 5.8

17-33

state State representing the part of request
presently parsing

req list cnt fix lfp ard plt fct lsto state_t

target_fix If loc_interest_inc_l contains ARR_FIX
set & find ARR_AIRP.

- - string6

ETMS System Design Document
Version 5.8

17-34

Table 17-2. parsed_data_t Data Structure (continued)

parsed_data_t

Library Name: listserver_lib Purpose:
This record contains all information for a single request.

Element Name: parser.ins.pas

Data Item Definition Unit/Format Range Var. Type/Bits

title_count Unsued variable. - - integer16

tv Time Verification Information, if
requested.

- CT,OT,PT,S
T

integer16

num_remote_tries Number of time process has tried to
contact another process.

- - integer16

count_num_centers Number of centers in the location of
interest inclusion list.

- integer16

ucap User entered capacity value. - - cap_ga_ptr

cap TDB dictated capacity value. - - cap_ga_ptr

ugas User entered General Aviation
Estimate value.

- - cap_ga_ptr

gas TDB dictated General Aviation
Estimate value.

- - cap_ga_ptr

a_stats Arrival buckets. A bucket contains
all for an arr. time int.

- - stat_bucket_ptr

d_stats Departure buckets. A bucket
contains all for a dep time int.

- - stat_bucket_ptr

calc_ftv Calculate Flight Time Verification
(Early, On-Time, Late)

VT key word T/F boolean

clist Is this request a center list
request? (Yes means True.)

- T/F boolean

do_fixl Is this request a Fox Loading
request? (Yes means True.)

- T/F boolean

need_header Flag stating whether the report
should have a header (request).

- T/F boolean

print_area This flag is True if this is an AREA
request; False otherwise.

- T/F boolean

print_cnts This flag is True if COUNTS report;
False if LIST report.

Default True T/F boolean

print_fix True if this request has the fix key
word in the request.

- T/F boolean

print_flts Print entire Arrival Departure or
both sections of report.

- T/F boolean

print_stats Print Arr/Dep Time verification
Statistics (Early, On – Time, Late)

- T/F boolean

xmit True if this is a hubsite request. - T/F boolean

remote_req_id If this is LSTHUB process/req.,
contains the LIST report name.

- - string22

ETMS System Design Document
Version 5.8

17-35

ETMS System Design Document
Version 5.8

17-36

Table 17-2. parsed_data_t Data Structure (continued)

parsed_data_t

Library Name: listserver_lib Purpose:
This record contains all information for a single request.

Element Name: parser.ins.pas

Data Item Definition Unit/Format Range Var. Type/Bits

remote_req_num Unique request# within remote LIST
process distinguishing req.

- - integer16

initiator Network Address of the initiator of
the LIST request.

- - net_$address_t

hub_proc Network Address of the LSTHUB that
recvd. hub request

- - net_$address_t

hub_reply In remote LIST means waiting ona
hub LSTHUB response.

- T/F boolean

wait_for_xmit Wait far a transmit operaion to
complete.

- T/F boolean

full_asd_resp_flnam
e

Fully qualified pathname for output file
at remote LIST site.

- - pgm_$arg

using_old_data If secondary request then one is
using old data from/rawlist dir

- T/F boolean

secondary_req True if the user issued a secondary
request.

- T/F boolean

format_options_q List of user specified options the
report will be formatted via.

array 1…maxop
t

format_opt_t

count_time If COUNT report, Count report time
range.

- - count_time_rec_t

filter_time Tracks time type used in filtering, i.e.,
SGTA, PGTA, etc.

- - filter_time_t

list_time If AREA report, then time range for
the report desired.

- - timedate_rec_t

req_time Time range for which the request
was issued.

- - timedate_rec_t

start_utc Request start date/time in whole
seconds in Univ. Coord. Time

- - integer32

end_utc Request end date/time in whole
seconds in Univ. Coord. Time

- - integer32

today Today as perceived by parsing
algorithm to expand date/time.

- - cal_$timedate_t

count_filter_q Array of count filters to apply array 1…4 func_ptr_t

count_stack_size Number of count filters on the
count_filter_q (above)

- - integer16

maxlinelen Report output line size. 85 if not
overridden via SETLEN keyword

- - integer16

ac_cat_inc_l List of user specified aircraft
categories to include.

- - wdptr_t

ETMS System Design Document
Version 5.8

17-37

ac_cat_exc_l List of user specified aircraft
categories to exclude.

- - wdptr_t

ETMS System Design Document
Version 5.8

17-38

Table 17-2. parsed_data_t Data Structure (continued)

parsed_data_t

Library Name: listserver_lib Purpose:
This record contains all information for a single request.

Element Name: parser.ins.pas

Data Item Definition Unit/Forma
t

Range Var. Type/Bits

class_inc_l List of user specified Aiecraft
Classes to include.

- S, L, H wdptr_t

class_exc_l List of user specified Aircraft
Classes to exclude.

- Small, Large,
Heavy

wdptr_t

user_inc_l List of COUNT USER Aircrafts user
specifies to include.

- T, F, C, G, M wdptr_t

user_exc_l List of COUNT USER Aircrafts user
specifies to exclude.

- T, F, C, G, M wdptr_t

aircraft_inc_l List of user specified aircraft types
to include.

- i.e., L101 wdptr_t

aircraft_exc_l List of user specified aircraft types
to exclude.

- i.e., -B727 wdptr_t

airlines_inc_l List of user specified airline(s) to
include.

- i.e., TWA wdptr_t

airlines_exc_l List of user specified airline(s) to
exclude.

- i.e., -UAL wdptr_t

count_loc_inc_l If COUNT report, user specified
Location(s) of Interest to include.

- - wdptr_t

count_loc_exc_l If COUNT report, user specified
Location(s) of Interest to exclude.

- - wdptr_t

loc_interest_inc_l List of user specified Primary
Location of Interest to include.

- - wdptr_t

loc_interest_exc_l List of user specified Primary
Location of Interest to exclude.

- - wdptr_t

count_option_list List of Count/Category columns for
Inclusion/Exclusion in report.

- - wdptr_t

sort_option_list List of Columns by which to sort
report.

- Chronological
Def.

wdptr_t

info_option_list User specified columns desired if
LIST report (vs. COUNT).

- - wdptr_t

sort_key User specified SORT criterion. - - wdptr_t

restrict_loc_exc_l Secondary Location(s) of Inclusion
List

- - wdptr_t

restrict_loc_inc_l Secondary Location(s) of Inclusion
List

- - wdptr_t

afix_inc_l List of user specified Arrival
Fix(es) to include.

- - wdptr_t

ETMS System Design Document
Version 5.8

17-39

afix_exc_l List of user specified Arrival
Fix(es) to exclude.

- - wdptr_t

sector_inc_l List of user specified Sector(s) to
include.

- - wdptr_t

ETMS System Design Document
Version 5.8

17-40

Table 17-2. parsed_data_t Data Structure (continued)

parsed_data_t

Library Name: listserver_lib Purpose:
This record contains all information for a single request.

Element Name: parser.ins.pas

Data Item Definition Unit/Format Range Var. Type/Bits

sector_exc_l List of user specified Sector(s) to
exclude.

- - wdptr_t

fix_inc_l List of user specified Fix(es) to
include.

- - wdptr_t

fix_exc_l List of user specified Fix(es) to
exclude.

- - wdptr_t

center_inc_l List of user specified Center(s) to
include.

- - wdptr_t

center_exc_l List of user specified Center(s) to
exclude.

- - wdptr_t

airway_inc_l List of user specified airway(s) to
include.

- - wdptr_t

airway_exc_l List of user specified airway(s) to
exclude.

- - wdptr_t

equip_inc_l List of user spec. Aircraft Equip.
Prefix and Suffixes to include.

- - wdptr_t

equip_exc_l List of user spec. Aircraft Equip.
Prefix and Suffixes to exclude.

- - wdptr_t

ac_rmk_inc_l List of user spec. Aircraft Remarks to
include.

- - wdptr_t

ac_rmk_exc_l List of user spec. Aircraft Remarks to
exclude.

- - wdptr_t

ac_rmk_fmt_inc_l List of user spec. AC_RMK columns
to include in a list report.

- - wdptr_t

ac_rmk-fmt-exc_l List of user spec. AC_RMK columns
to exclude from a list report.

- - wdptr_t

e-type_inc_l List #acft/EQP_PREFIX/TYPE/
EQP_SUFFIX to include.

- - dbl_wdptr_t

e_type_exc_l List #acft/EQP_PREFIX/TYPE/
EQP_SUFFIX to exclude.

- - dbl_wdptr_t

fixl_bucket_list List of buckets for a FIXL report. (Fix
Loading Report)

- - bucket_ptr

arr_bucket_list List of buckets to separate the arrival
portion of a report into.

- - bucket_ptr

dep_bucket_list List of buckets to separate the
departure portion of a report into.

- - bucket_ptr

ETMS System Design Document
Version 5.8

17-41

Table 17-3. flight_rec_t Data Structure

flight_rec_t

Library Name: listserver_lib Purpose:
This record contains all the available information for a
flight.

Element Name: parser.ins.pas

Data Item Definition Unit/Format Range Var. Type/Bits

flight_id Aircraft identification 1 or more letters
followed by digits

- string7

dep_ap Departure Airport FAA Airport
designator

- string5

sched_dep_time Scheduled departure time UTC - integer32

prop_dep_time Proposed departure time UTC - integer32

ttm_dep_time TTM modeled time UTC - integer32

cntrl_dep_time Controlled departure time UTC - integer32

actual_dep_time Actual departure time UTC - integer32

est_dep_time Estimated departure time UTC -† integer32

orig_dep_time Original departure time UTC - integer32

dep_t_type Best departure time available 1 char designator A, P char

ete Estimated time enroute minutes 1 – 1440 integer16

element_name Sector/Fix that put flight into
response from TDB/FTM.

- - array[1…10] of char

entry_time Sector entry time minutes since
midnight

0 – 1439 integer16

exit_time Sector exit time minutes since
midnight

0 – 1439 integer16

ttm_slot TTM flight time slot Hour since
midnight

0 – 23 integer32

arr_ap Arrival airport FAA airport
designator

- string5

sched_arr_time Scheduled arrival time UTC - integer32

prop_arr_time Proposed arrival time UTC - integer

ttm_arr_time TTM modeled time UTC - integer32

cntrl_arr_time Controlled arrival time UTC - integer32

actual_arr_time Actual arrival time UTC - integer32

ETMS System Design Document
Version 5.8

17-42

est_arr_time Estimated arrival time UTC -† integer32

Table 17-3. flight_rec_t Data Structure (continued)

flight_rec_t

Data Item Definition Unit/Format Range Var. Type/Bits

orig_arr_time Original Arrival Time UTC - integer32

arr_t_type What is the best estimate for the
arrival time

single char A, E char

arr_fix Arrival fix FAA Fix
designator

- string6

arr_fix_time Time at the arrival fix UTC - integer32

air_car Airline name FAA airline
designator

- string3

ac_cat Aircraft category single char J, P, T char

ac_class Aircraft class single char H, S, L char

num_aircraft Number of Aircraft (flying in formation
on a single flight plan)

single digit 1 – 9 char

ac_eqp_prefix Aircraft Equipment Prefix [A – Z]/ A – Z char

ac_type Aircraft type FAA aircraft type
designator

- string4

ac_eqp_suffix Aircraft Equipment Suffix /[A – Z] A – Z char

active Is this an active flight? - yes/no boolean

alt Flight’s Radar altitude (last reported) 100’s of feet - integer16

ascii_altitude ASCII for Radar Altitude (i.e., has
Block altitude within)

in 100’s of feet
xxxByyy or xxx

- string8

f_alt Flight’s Filed Altitude 100’s of feet - integer16

ascii_f_alt ASCII for Filed Altitude (i.e., has Block
altitude within)

in 100’s of feet
xxxByyy or xxx

- string8

alt_type Altitude type of the radar alt only [A – Z] - char

ETMS System Design Document
Version 5.8

17-43

Table 17-3. flight_rec_t Data Structure (continued)

flight_rec_t

Data Item Definition Unit/Forma
t

Range Var. Type/Bits

speed Radar Ground Speed - - integer16

f_speed Filed Speed - - integer16

user_cat User category single char C, F, G, M, T char

militar Is this a military flight? - yes/no boolean

diffs Used to compute time differences for
VT reports

- - vt_dif_typ

route_len Length of the route string - - integer

route Route char string string256

remarks_flags 16 bits of Boolean values as to
whether remark is on/off

bitflags 0 – 1 per bit integer16

num_sectors No. of sector names in sector list
Max. of 50 as in FTM

- 0 – 50 integer16

sector_list List of 6-byte sector names 6 bytes each max 50 in list string300

num_fixes No. of fixes in fix_list Max. of 50 as in
FTM

- 0 – 50 integer16

fix_list List of 6-byte fix names 6 bytes each max 50 in list string300

num_airways No. of airway names in airway list
Max. of 50 as it FTM

- 0 – 50 integer16

airway_list List of 6-byte airway names 6 bytes each max 50 in list integer300

num_centers No. of centers in center_list Max. of
10 as in FTM

- 0 – 10 integer16

center_list List of 3-byte center names 3 bytes each max 10 in list string10

† The estimated departure time is labeled with an A when the flight is flagged as being
active. Otherwise, it is labeled with a P. The estimated arrival time is labeled with an
A when the time corresponds to the actual arrival time. Otherwise, it is labeled with a
P.

